ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.07037
111
1
v1v2 (latest)

LDPC codes: tracking non-stationary channel noise using sequential variational Bayesian estimates

13 April 2022
J. D. Toit
Jaco du Preez
R. Wolhuter
ArXiv (abs)PDFHTML
Abstract

We present a sequential Bayesian learning method for tracking non-stationary signal-to-noise ratios in LDPC codes using probabilistic graphical models. We represent the LDPC code as a cluster graph using a general purpose cluster graph construction algorithm called the layered trees running intersection property (LTRIP) algorithm. The channel noise estimator is a global Gamma cluster, which we extend to allow for Bayesian tracking of non-stationary noise variation. We evaluate our proposed model on real-world 5G drive test data. Our results show that our model is capable of tracking non-stationary channel noise, which outperforms an LDPC code with a fixed knowledge of the actual average channel noise.

View on arXiv
Comments on this paper