ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.07634
71
0

A generative neural network model for random dot product graphs

15 April 2022
Vittorio Loprinzo
L. Younes
    GANGNN
ArXiv (abs)PDFHTML
Abstract

We present GraphMoE, a novel neural network-based approach to learning generative models for random graphs. The neural network is trained to match the distribution of a class of random graphs by way of a moment estimator. The features used for training are graphlets, subgraph counts of small order. The neural network accepts random noise as input and outputs vector representations for nodes in the graph. Random graphs are then realized by applying a kernel to the representations. Graphs produced this way are demonstrated to be able to imitate data from chemistry, medicine, and social networks. The produced graphs are similar enough to the target data to be able to fool discriminator neural networks otherwise capable of separating classes of random graphs.

View on arXiv
Comments on this paper