ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.10172
61
16

Gated Multimodal Fusion with Contrastive Learning for Turn-taking Prediction in Human-robot Dialogue

18 April 2022
Jiudong Yang
Pei-Hsin Wang
Yi Zhu
Mingchao Feng
Meng Chen
Xiaodong He
ArXiv (abs)PDFHTML
Abstract

Turn-taking, aiming to decide when the next speaker can start talking, is an essential component in building human-robot spoken dialogue systems. Previous studies indicate that multimodal cues can facilitate this challenging task. However, due to the paucity of public multimodal datasets, current methods are mostly limited to either utilizing unimodal features or simplistic multimodal ensemble models. Besides, the inherent class imbalance in real scenario, e.g. sentence ending with short pause will be mostly regarded as the end of turn, also poses great challenge to the turn-taking decision. In this paper, we first collect a large-scale annotated corpus for turn-taking with over 5,000 real human-robot dialogues in speech and text modalities. Then, a novel gated multimodal fusion mechanism is devised to utilize various information seamlessly for turn-taking prediction. More importantly, to tackle the data imbalance issue, we design a simple yet effective data augmentation method to construct negative instances without supervision and apply contrastive learning to obtain better feature representations. Extensive experiments are conducted and the results demonstrate the superiority and competitiveness of our model over several state-of-the-art baselines.

View on arXiv
Comments on this paper