ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.10349
9
4

Provably Efficient Kernelized Q-Learning

21 April 2022
Shuang Liu
H. Su
    MLT
ArXivPDFHTML
Abstract

We propose and analyze a kernelized version of Q-learning. Although a kernel space is typically infinite-dimensional, extensive study has shown that generalization is only affected by the effective dimension of the data. We incorporate such ideas into the Q-learning framework and derive regret bounds for arbitrary kernels. In particular, we provide concrete bounds for linear kernels and Gaussian RBF kernels; notably, the latter bound looks almost identical to the former, only that the actual dimension is replaced by a different notion of dimensionality. Finally, we test our algorithm on a suite of classic control tasks; remarkably, under the Gaussian RBF kernel, it achieves reasonably good performance after only 1000 environmental steps, while its neural network counterpart, deep Q-learning, still struggles.

View on arXiv
Comments on this paper