ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.10782
20
12

On Feature Learning in Neural Networks with Global Convergence Guarantees

22 April 2022
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
    MLT
ArXivPDFHTML
Abstract

We study the optimization of wide neural networks (NNs) via gradient flow (GF) in setups that allow feature learning while admitting non-asymptotic global convergence guarantees. First, for wide shallow NNs under the mean-field scaling and with a general class of activation functions, we prove that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF. Building upon this analysis, we study a model of wide multi-layer NNs whose second-to-last layer is trained via GF, for which we also prove a linear-rate convergence of the training loss to zero, but regardless of the input dimension. We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.

View on arXiv
Comments on this paper