ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.11028
17
46

Reinforced Causal Explainer for Graph Neural Networks

23 April 2022
Xiang Wang
Y. Wu
An Zhang
Fuli Feng
Xiangnan He
Tat-Seng Chua
    CML
ArXivPDFHTML
Abstract

Explainability is crucial for probing graph neural networks (GNNs), answering questions like "Why the GNN model makes a certain prediction?". Feature attribution is a prevalent technique of highlighting the explanatory subgraph in the input graph, which plausibly leads the GNN model to make its prediction. Various attribution methods exploit gradient-like or attention scores as the attributions of edges, then select the salient edges with top attribution scores as the explanation. However, most of these works make an untenable assumption - the selected edges are linearly independent - thus leaving the dependencies among edges largely unexplored, especially their coalition effect. We demonstrate unambiguous drawbacks of this assumption - making the explanatory subgraph unfaithful and verbose. To address this challenge, we propose a reinforcement learning agent, Reinforced Causal Explainer (RC-Explainer). It frames the explanation task as a sequential decision process - an explanatory subgraph is successively constructed by adding a salient edge to connect the previously selected subgraph. Technically, its policy network predicts the action of edge addition, and gets a reward that quantifies the action's causal effect on the prediction. Such reward accounts for the dependency of the newly-added edge and the previously-added edges, thus reflecting whether they collaborate together and form a coalition to pursue better explanations. As such, RC-Explainer is able to generate faithful and concise explanations, and has a better generalization power to unseen graphs. When explaining different GNNs on three graph classification datasets, RC-Explainer achieves better or comparable performance to SOTA approaches w.r.t. predictive accuracy and contrastivity, and safely passes sanity checks and visual inspections. Codes are available at https://github.com/xiangwang1223/reinforced_causal_explainer.

View on arXiv
Comments on this paper