ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.11475
20
23

Adaptive actuation of magnetic soft robots using deep reinforcement learning

25 April 2022
Jianpeng Yao
Quanliang Cao
Yuwei Ju
Yuxuan Sun
Ruiqi Liu
Xiaotao Han
Liang Li
    AI4CE
ArXivPDFHTML
Abstract

Magnetic soft robots have attracted growing interest due to their unique advantages in terms of untethered actuation and excellent controllability. However, finding the required magnetization patterns or magnetic fields to achieve the desired functions of these robots is quite challenging in many cases. No unified framework for design has been proposed yet, and existing methods mainly rely on manual heuristics, which are hard to satisfy the high complexity level of the desired robotic motion. Here, we develop an intelligent method to solve the related inverse-design problems, implemented by introducing a novel simulation platform for magnetic soft robots based on Cosserat rod models and a deep reinforcement learning framework based on TD3. We demonstrate that magnetic soft robots with different magnetization patterns can learn to move without human guidance in simulations, and effective magnetic fields can be autonomously generated that can then be applied directly to real magnetic soft robots in an open-loop way.

View on arXiv
Comments on this paper