ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.13534
103
4
v1v2 (latest)

Singular value distribution of dense random matrices with block Markovian dependence

28 April 2022
J. Sanders
Alexander Van Werde
ArXiv (abs)PDFHTML
Abstract

A block Markov chain is a Markov chain whose state space can be partitioned into a finite number of clusters such that the transition probabilities only depend on the clusters. Block Markov chains thus serve as a model for Markov chains with communities. This paper establishes limiting laws for the singular value distributions of the empirical transition matrix and empirical frequency matrix associated to a sample path of the block Markov chain whenever the length of the sample path is Θ(n2)\Theta(n^2)Θ(n2) with nnn the size of the state space. The proof approach is split into two parts. First, we introduce a class of symmetric random matrices with dependence called approximately uncorrelated random matrices with variance profile. We establish their limiting eigenvalue distributions by means of the moment method. Second, we develop a coupling argument to show that this general-purpose result applies to block Markov chains.

View on arXiv
Comments on this paper