ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.00111
11
25

Privacy Sensitive Speech Analysis Using Federated Learning to Assess Depression

30 April 2022
BN Suhas
Saeed Abdullah
ArXivPDFHTML
Abstract

Recent studies have used speech signals to assess depression. However, speech features can lead to serious privacy concerns. To address these concerns, prior work has used privacy-preserving speech features. However, using a subset of features can lead to information loss and, consequently, non-optimal model performance. Furthermore, prior work relies on a centralized approach to support continuous model updates, posing privacy risks. This paper proposes to use Federated Learning (FL) to enable decentralized, privacy-preserving speech analysis to assess depression. Using an existing dataset (DAIC-WOZ), we show that FL models enable a robust assessment of depression with only 4--6% accuracy loss compared to a centralized approach. These models also outperform prior work using the same dataset. Furthermore, the FL models have short inference latency and small memory footprints while being energy-efficient. These models, thus, can be deployed on mobile devices for real-time, continuous, and privacy-preserving depression assessment at scale.

View on arXiv
Comments on this paper