ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.00320
11
6

Detoxifying Language Models with a Toxic Corpus

30 April 2022
Yoon A Park
Frank Rudzicz
ArXivPDFHTML
Abstract

Existing studies have investigated the tendency of autoregressive language models to generate contexts that exhibit undesired biases and toxicity. Various debiasing approaches have been proposed, which are primarily categorized into data-based and decoding-based. In our study, we investigate the ensemble of the two debiasing paradigms, proposing to use toxic corpus as an additional resource to reduce the toxicity. Our result shows that toxic corpus can indeed help to reduce the toxicity of the language generation process substantially, complementing the existing debiasing methods.

View on arXiv
Comments on this paper