ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.00393
26
8

Lifetime-based Optimization for Simulating Quantum Circuits on a New Sunway Supercomputer

1 May 2022
Yaojian Chen
Yong Liu
X. Shi
Jiawei Song
Xin Liu
L. Gan
Chunyi Guo
Haohuan Fu
Jie Gao
Dexun Chen
Guangwen Yang
ArXivPDFHTML
Abstract

High-performance classical simulator for quantum circuits, in particular the tensor network contraction algorithm, has become an important tool for the validation of noisy quantum computing. In order to address the memory limitations, the slicing technique is used to reduce the tensor dimensions, but it could also lead to additional computation overhead that greatly slows down the overall performance. This paper proposes novel lifetime-based methods to reduce the slicing overhead and improve the computing efficiency, including an interpretation method to deal with slicing overhead, an in-place slicing strategy to find the smallest slicing set and an adaptive tensor network contraction path refiner customized for Sunway architecture. Experiments show that in most cases the slicing overhead with our in-place slicing strategy would be less than the cotengra, which is the most used graph path optimization software at present. Finally, the resulting simulation time is reduced to 96.1s for the Sycamore quantum processor RQC, with a sustainable single-precision performance of 308.6Pflops using over 41M cores to generate 1M correlated samples, which is more than 5 times performance improvement compared to 60.4 Pflops in 2021 Gordon Bell Prize work.

View on arXiv
Comments on this paper