ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.00671
19
4

Jack and Masters of all Trades: One-Pass Learning Sets of Model Sets From Large Pre-Trained Models

2 May 2022
Han Xiang Choong
Yew-Soon Ong
Abhishek Gupta
Caishun Chen
Ray Lim
ArXivPDFHTML
Abstract

For deep learning, size is power. Massive neural nets trained on broad data for a spectrum of tasks are at the forefront of artificial intelligence. These large pre-trained models or Jacks of All Trades (JATs), when fine-tuned for downstream tasks, are gaining importance in driving deep learning advancements. However, environments with tight resource constraints, changing objectives and intentions, or varied task requirements, could limit the real-world utility of a singular JAT. Hence, in tandem with current trends towards building increasingly large JATs, this paper conducts an initial exploration into concepts underlying the creation of a diverse set of compact machine learning model sets. Composed of many smaller and specialized models, the Set of Sets is formulated to simultaneously fulfil many task settings and environmental conditions. A means to arrive at such a set tractably in one pass of a neuroevolutionary multitasking algorithm is presented for the first time, bringing us closer to models that are collectively Masters of All Trades.

View on arXiv
Comments on this paper