ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.04730
15
8

Power of Quantum Generative Learning

10 May 2022
Yuxuan Du
Zhuozhuo Tu
Bujiao Wu
Xiao Yuan
Dacheng Tao
    AI4CE
ArXivPDFHTML
Abstract

The intrinsic probabilistic nature of quantum mechanics invokes endeavors of designing quantum generative learning models (QGLMs). Despite the empirical achievements, the foundations and the potential advantages of QGLMs remain largely obscure. To narrow this knowledge gap, here we explore the generalization property of QGLMs, the capability to extend the model from learned to unknown data. We consider two prototypical QGLMs, quantum circuit Born machines and quantum generative adversarial networks, and explicitly give their generalization bounds. The result identifies superiorities of QGLMs over classical methods when quantum devices can directly access the target distribution and quantum kernels are employed. We further employ these generalization bounds to exhibit potential advantages in quantum state preparation and Hamiltonian learning. Numerical results of QGLMs in loading Gaussian distribution and estimating ground states of parameterized Hamiltonians accord with the theoretical analysis. Our work opens the avenue for quantitatively understanding the power of quantum generative learning models.

View on arXiv
Comments on this paper