ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.05842
9
0

Supplementary Material: Implementation and Experiments for GAU-based Model

12 May 2022
Zhenjie Liu
ArXivPDFHTML
Abstract

In February this year Google proposed a new Transformer variant called FLASH, which has a faster speed, lower VRAM footprint and better performance. This is achieved by designing a performant layer named GAU (Gated Attention Unit), which combines the Attention layer and FFN. In this paper, some implementation details are re-analyzed both theoretically and practically. We then propose a novel GAU-based model and pre-train it on a Chinese corpus. Results of the CLUE benchmark show that our model achieves a dev average score of 75.02, 1% higher than RoFormerV1 and being 45% faster, which is also competitive with RoFormerV2.

View on arXiv
Comments on this paper