ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.06887
24
8

AVCAffe: A Large Scale Audio-Visual Dataset of Cognitive Load and Affect for Remote Work

13 May 2022
Pritam Sarkar
A. Posen
Ali Etemad
ArXivPDFHTML
Abstract

We introduce AVCAffe, the first Audio-Visual dataset consisting of Cognitive load and Affect attributes. We record AVCAffe by simulating remote work scenarios over a video-conferencing platform, where subjects collaborate to complete a number of cognitively engaging tasks. AVCAffe is the largest originally collected (not collected from the Internet) affective dataset in English language. We recruit 106 participants from 18 different countries of origin, spanning an age range of 18 to 57 years old, with a balanced male-female ratio. AVCAffe comprises a total of 108 hours of video, equivalent to more than 58,000 clips along with task-based self-reported ground truth labels for arousal, valence, and cognitive load attributes such as mental demand, temporal demand, effort, and a few others. We believe AVCAffe would be a challenging benchmark for the deep learning research community given the inherent difficulty of classifying affect and cognitive load in particular. Moreover, our dataset fills an existing timely gap by facilitating the creation of learning systems for better self-management of remote work meetings, and further study of hypotheses regarding the impact of remote work on cognitive load and affective states.

View on arXiv
Comments on this paper