ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.08535
86
55

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

17 May 2022
Fangzhou Hong
Mingyuan Zhang
Liang Pan
Zhongang Cai
Lei Yang
Ziwei Liu
    CLIP
ArXivPDFHTML
Abstract

3D avatar creation plays a crucial role in the digital age. However, the whole production process is prohibitively time-consuming and labor-intensive. To democratize this technology to a larger audience, we propose AvatarCLIP, a zero-shot text-driven framework for 3D avatar generation and animation. Unlike professional software that requires expert knowledge, AvatarCLIP empowers layman users to customize a 3D avatar with the desired shape and texture, and drive the avatar with the described motions using solely natural languages. Our key insight is to take advantage of the powerful vision-language model CLIP for supervising neural human generation, in terms of 3D geometry, texture and animation. Specifically, driven by natural language descriptions, we initialize 3D human geometry generation with a shape VAE network. Based on the generated 3D human shapes, a volume rendering model is utilized to further facilitate geometry sculpting and texture generation. Moreover, by leveraging the priors learned in the motion VAE, a CLIP-guided reference-based motion synthesis method is proposed for the animation of the generated 3D avatar. Extensive qualitative and quantitative experiments validate the effectiveness and generalizability of AvatarCLIP on a wide range of avatars. Remarkably, AvatarCLIP can generate unseen 3D avatars with novel animations, achieving superior zero-shot capability.

View on arXiv
Comments on this paper