ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.09307
14
4

Support-set based Multi-modal Representation Enhancement for Video Captioning

19 May 2022
Xiaoya Chen
Jingkuan Song
Pengpeng Zeng
Lianli Gao
Hengtao Shen
ArXivPDFHTML
Abstract

Video captioning is a challenging task that necessitates a thorough comprehension of visual scenes. Existing methods follow a typical one-to-one mapping, which concentrates on a limited sample space while ignoring the intrinsic semantic associations between samples, resulting in rigid and uninformative expressions. To address this issue, we propose a novel and flexible framework, namely Support-set based Multi-modal Representation Enhancement (SMRE) model, to mine rich information in a semantic subspace shared between samples. Specifically, we propose a Support-set Construction (SC) module to construct a support-set to learn underlying connections between samples and obtain semantic-related visual elements. During this process, we design a Semantic Space Transformation (SST) module to constrain relative distance and administrate multi-modal interactions in a self-supervised way. Extensive experiments on MSVD and MSR-VTT datasets demonstrate that our SMRE achieves state-of-the-art performance.

View on arXiv
Comments on this paper