ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.09335
45
7

A Simple Yet Effective SVD-GCN for Directed Graphs

19 May 2022
Chunya Zou
Andi Han
Lequan Lin
Junbin Gao
    GNN
ArXivPDFHTML
Abstract

In this paper, we propose a simple yet effective graph neural network for directed graphs (digraph) based on the classic Singular Value Decomposition (SVD), named SVD-GCN. The new graph neural network is built upon the graph SVD-framelet to better decompose graph signals on the SVD ``frequency'' bands. Further the new framelet SVD-GCN is also scaled up for larger scale graphs via using Chebyshev polynomial approximation. Through empirical experiments conducted on several node classification datasets, we have found that SVD-GCN has remarkable improvements in a variety of graph node learning tasks and it outperforms GCN and many other state-of-the-art graph neural networks for digraphs. Moreover, we empirically demonstate that the SVD-GCN has great denoising capability and robustness to high level graph data attacks. The theoretical and experimental results prove that the SVD-GCN is effective on a variant of graph datasets, meanwhile maintaining stable and even better performance than the state-of-the-arts.

View on arXiv
Comments on this paper