430
v1v2v3v4 (latest)

Time Series Anomaly Detection via Reinforcement Learning-Based Model Selection

Canadian Conference on Electrical and Computer Engineering (CCECE), 2022
Abstract

Time series anomaly detection has been recognized as of critical importance for the reliable and efficient operation of real-world systems. Many anomaly detection methods have been developed based on various assumptions on anomaly characteristics. However, due to the complex nature of real-world data, different anomalies within a time series usually have diverse profiles supporting different anomaly assumptions. This makes it difficult to find a single anomaly detector that can consistently outperform other models. In this work, to harness the benefits of different base models, we propose a reinforcement learning-based model selection framework. Specifically, we first learn a pool of different anomaly detection models, and then utilize reinforcement learning to dynamically select a candidate model from these base models. Experiments on real-world data have demonstrated that the proposed strategy can indeed outplay all baseline models in terms of overall performance.

View on arXiv
Comments on this paper