ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.10128
48
80
v1v2 (latest)

Neural-Symbolic Models for Logical Queries on Knowledge Graphs

16 May 2022
Zhaocheng Zhu
Mikhail Galkin
Zuobai Zhang
Jian Tang
    NAI
ArXiv (abs)PDFHTML
Abstract

Answering complex first-order logic (FOL) queries on knowledge graphs is a fundamental task for multi-hop reasoning. Traditional symbolic methods traverse a complete knowledge graph to extract the answers, which provides good interpretation for each step. Recent neural methods learn geometric embeddings for complex queries. These methods can generalize to incomplete knowledge graphs, but their reasoning process is hard to interpret. In this paper, we propose Graph Neural Network Query Executor (GNN-QE), a neural-symbolic model that enjoys the advantages of both worlds. GNN-QE decomposes a complex FOL query into relation projections and logical operations over fuzzy sets, which provides interpretability for intermediate variables. To reason about the missing links, GNN-QE adapts a graph neural network from knowledge graph completion to execute the relation projections, and models the logical operations with product fuzzy logic. Extensive experiments on 3 datasets show that GNN-QE significantly improves over previous state-of-the-art models in answering FOL queries. Meanwhile, GNN-QE can predict the number of answers without explicit supervision, and provide visualizations for intermediate variables.

View on arXiv
Comments on this paper