ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.10788
74
6
v1v2 (latest)

Learning Muti-expert Distribution Calibration for Long-tailed Video Classification

IEEE transactions on multimedia (IEEE TMM), 2022
22 May 2022
Yufan Hu
Junyu Gao
Changsheng Xu
ArXiv (abs)PDFHTML
Abstract

Most existing state-of-the-art video classification methods assume the training data obey a uniform distribution. However, video data in the real world typically exhibit long-tail class distribution and imbalance, which extensively results in a model bias towards head class and leads to relatively low performance on tail class. While the current long-tail classification methods usually focus on image classification, adapting it to video data is not a trivial extension. We propose an end-to-end multi-experts distribution calibration method based on two-level distribution information to address these challenges. The method jointly considers the distribution of samples in each class (intra-class distribution) and the diverse distributions of overall data (inter-class distribution) to solve the problem of imbalanced data under long-tailed distribution. By modeling this two-level distribution information, the model can consider the head classes and the tail classes and significantly transfer the knowledge from the head classes to improve the performance of the tail classes. Extensive experiments verify that our method achieves state-of-the-art performance on the long-tailed video classification task.

View on arXiv
Comments on this paper