ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.11833
13
7

Diverse Lottery Tickets Boost Ensemble from a Single Pretrained Model

24 May 2022
Sosuke Kobayashi
Shun Kiyono
Jun Suzuki
Kentaro Inui
    MoMe
ArXivPDFHTML
Abstract

Ensembling is a popular method used to improve performance as a last resort. However, ensembling multiple models finetuned from a single pretrained model has been not very effective; this could be due to the lack of diversity among ensemble members. This paper proposes Multi-Ticket Ensemble, which finetunes different subnetworks of a single pretrained model and ensembles them. We empirically demonstrated that winning-ticket subnetworks produced more diverse predictions than dense networks, and their ensemble outperformed the standard ensemble on some tasks.

View on arXiv
Comments on this paper