ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.12309
11
3

Structured Prompt Tuning

24 May 2022
Chi-Liang Liu
Hung-yi Lee
Wen-tau Yih
ArXivPDFHTML
Abstract

We propose structured prompt tuning, a simple and effective method to improve prompt tuning. Instead of prepending a sequence of tunable embeddings to the input, we generate the soft prompt embeddings through a hypernetwork. Our approach subsumes the standard prompt tuning, allows more flexibility in model design and can be applied to both single-task and multi-task training settings. Empirically, structured prompt tuning shows a gain of +1.2 1.5pointsontheGLUEbenchmarkandislesssensitivetothechangeoflearningrate,comparedtostandardprompttuning.~1.5 points on the GLUE benchmark and is less sensitive to the change of learning rate, compared to standard prompt tuning. 1.5pointsontheGLUEbenchmarkandislesssensitivetothechangeoflearningrate,comparedtostandardprompttuning.

View on arXiv
Comments on this paper