ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.13421
224
60
v1v2 (latest)

Bias in Machine Learning Models Can Be Significantly Mitigated by Careful Training: Evidence from Neuroimaging Studies

Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2022
26 May 2022
Rongguang Wang
Pratik Chaudhari
Christos Davatzikos
    OODAI4CE
ArXiv (abs)PDFHTML
Abstract

Despite the great promise that machine learning has offered in many fields of medicine, it has also raised concerns about potential biases and poor generalization across genders, age distributions, races and ethnicities, hospitals, and data acquisition equipment and protocols. In the current study, and in the context of three brain diseases, we provide evidence which suggests that when properly trained, machine learning models can generalize well across diverse conditions and do not necessarily suffer from bias. Specifically, by using multi-study magnetic resonance imaging consortia for diagnosing Alzheimer's disease, schizophrenia, and autism spectrum disorder, we find that well-trained models have a high area-under-the-curve (AUC) on subjects across different subgroups pertaining to attributes such as gender, age, racial groups, and different clinical studies and are unbiased under multiple fairness metrics such as demographic parity difference, equalized odds difference, equal opportunity difference etc. We find that models that incorporate multi-source data from demographic, clinical, genetic factors and cognitive scores are also unbiased. These models have better predictive AUC across subgroups than those trained only with imaging features but there are also situations when these additional features do not help.

View on arXiv
Comments on this paper