ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.14263
24
17

Optimal Multi-robot Formations for Relative Pose Estimation Using Range Measurements

27 May 2022
C. C. Cossette
Mohamed Fouad Shalaby
David Saussié
Jérôme Le Ny
James Richard Forbes
ArXivPDFHTML
Abstract

In multi-robot missions, relative position and attitude information between agents is valuable for a variety of tasks such as mapping, planning, and formation control. In this paper, the problem of estimating relative poses from a set of inter-agent range measurements is investigated. Specifically, it is shown that the estimation accuracy is highly dependent on the true relative poses themselves, which prompts the desire to find multi-agent formations that provide the best estimation performance. By direct maximization of Fischer information, it is shown in simulation and experiment that large improvements in estimation accuracy can be obtained by optimizing the formation geometry of a team of robots.

View on arXiv
Comments on this paper