Generalization Bounds of Nonconvex-(Strongly)-Concave Stochastic Minimax Optimization

This paper takes an initial step to systematically investigate the generalization bounds of algorithms for solving nonconvex-(strongly)-concave (NC-SC/NC-C) stochastic minimax optimization measured by the stationarity of primal functions. We first establish algorithm-agnostic generalization bounds via uniform convergence between the empirical minimax problem and the population minimax problem. The sample complexities for achieving -generalization are and for NC-SC and NC-C settings, respectively, where is the dimension and is the condition number. We further study the algorithm-dependent generalization bounds via stability arguments of algorithms. In particular, we introduce a novel stability notion for minimax problems and build a connection between generalization bounds and the stability notion. As a result, we establish algorithm-dependent generalization bounds for stochastic gradient descent ascent (SGDA) algorithm and the more general sampling-determined algorithms.
View on arXiv