ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15268
95
4
v1v2v3 (latest)

Federated X-Armed Bandit

30 May 2022
Wenjie Li
Qifan Song
Jean Honorio
Guang Lin
    FedML
ArXiv (abs)PDFHTML
Abstract

This work establishes the first framework of federated X\mathcal{X}X-armed bandit, where different clients face heterogeneous local objective functions defined on the same domain and are required to collaboratively figure out the global optimum. We propose the first federated algorithm for such problems, named \texttt{Fed-PNE}. By utilizing the topological structure of the global objective inside the hierarchical partitioning and the weak smoothness property, our algorithm achieves sublinear cumulative regret with respect to both the number of clients and the evaluation budget. Meanwhile, it only requires logarithmic communications between the central server and clients, protecting the client privacy. Experimental results on synthetic functions and real datasets validate the advantages of \texttt{Fed-PNE} over various centralized and federated baseline algorithms.

View on arXiv
Comments on this paper