ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.00583
13
4

Calibrate and Debias Layer-wise Sampling for Graph Convolutional Networks

1 June 2022
Yifan Chen
Tianning Xu
Dilek Z. Hakkani-Tür
Di Jin
Yun Yang
Ruoqing Zhu
ArXivPDFHTML
Abstract

Multiple sampling-based methods have been developed for approximating and accelerating node embedding aggregation in graph convolutional networks (GCNs) training. Among them, a layer-wise approach recursively performs importance sampling to select neighbors jointly for existing nodes in each layer. This paper revisits the approach from a matrix approximation perspective, and identifies two issues in the existing layer-wise sampling methods: suboptimal sampling probabilities and estimation biases induced by sampling without replacement. To address these issues, we accordingly propose two remedies: a new principle for constructing sampling probabilities and an efficient debiasing algorithm. The improvements are demonstrated by extensive analyses of estimation variance and experiments on common benchmarks. Code and algorithm implementations are publicly available at https://github.com/ychen-stat-ml/GCN-layer-wise-sampling .

View on arXiv
Comments on this paper