ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.00850
20
4

Dynamic MRI using Learned Transform-based Tensor Low-Rank Network (LT2^22LR-Net)

2 June 2022
Yinghao Zhang
Peng Li
Yue Hu
    MedIm
ArXivPDFHTML
Abstract

While low-rank matrix prior has been exploited in dynamic MR image reconstruction and has obtained satisfying performance, tensor low-rank models have recently emerged as powerful alternative representations for three-dimensional dynamic MR datasets. In this paper, we introduce a novel deep unrolling network for dynamic MRI, namely the learned transform-based tensor low-rank network (LT2^22LR-Net). First, we generalize the tensor singular value decomposition (t-SVD) into an arbitrary unitary transform-based version and subsequently propose the novel transformed tensor nuclear norm (TTNN). Then, we design a novel TTNN-based iterative optimization algorithm based on the alternating direction method of multipliers (ADMM) to exploit the tensor low-rank prior in the transformed domain. The corresponding iterative steps are unrolled into the proposed LT2^22LR-Net, where the convolutional neural network (CNN) is incorporated to adaptively learn the transformation from the dynamic MR dataset for more robust and accurate tensor low-rank representations. Experimental results on the cardiac cine MR dataset demonstrate that the proposed framework can provide improved recovery results compared with the state-of-the-art methods.

View on arXiv
Comments on this paper