ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01206
55
11
v1v2v3 (latest)

Positive Unlabeled Contrastive Learning

1 June 2022
Anish Acharya
Sujay Sanghavi
Li Jing
Bhargav Bhushanam
Dhruv Choudhary
Michael G. Rabbat
    SSL
ArXiv (abs)PDFHTML
Abstract

Self-supervised pretraining on unlabeled data followed by supervised fine-tuning on labeled data is a popular paradigm for learning from limited labeled examples. We extend this paradigm to the classical positive unlabeled (PU) setting, where the task is to learn a binary classifier given only a few labeled positive samples, and (often) a large amount of unlabeled samples (which could be positive or negative). We first propose a simple extension of standard infoNCE family of contrastive losses, to the PU setting; and show that this learns superior representations, as compared to existing unsupervised and supervised approaches. We then develop a simple methodology to pseudo-label the unlabeled samples using a new PU-specific clustering scheme; these pseudo-labels can then be used to train the final (positive vs. negative) classifier. Our method handily outperforms state-of-the-art PU methods over several standard PU benchmark datasets, while not requiring a-priori knowledge of any class prior (which is a common assumption in other PU methods). We also provide a simple theoretical analysis that motivates our methods.

View on arXiv
Comments on this paper