ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01550
11
8

TCE at Qurán QA 2022: Arabic Language Question Answering Over Holy Qurán Using a Post-Processed Ensemble of BERT-based Models

3 June 2022
Mohammed Elkomy
A. Sarhan
ArXivPDFHTML
Abstract

In recent years, we witnessed great progress in different tasks of natural language understanding using machine learning. Question answering is one of these tasks which is used by search engines and social media platforms for improved user experience. Arabic is the language of the Holy Qurán; the sacred text for 1.8 billion people across the world. Arabic is a challenging language for Natural Language Processing (NLP) due to its complex structures. In this article, we describe our attempts at OSACT5 Qurán QA 2022 Shared Task, which is a question answering challenge on the Holy Qurán in Arabic. We propose an ensemble learning model based on Arabic variants of BERT models. In addition, we perform post-processing to enhance the model predictions. Our system achieves a Partial Reciprocal Rank (pRR) score of 56.6% on the official test set.

View on arXiv
Comments on this paper