ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01649
25
11

Neural Differential Equations for Learning to Program Neural Nets Through Continuous Learning Rules

3 June 2022
Kazuki Irie
Francesco Faccio
Jürgen Schmidhuber
    AI4TS
ArXivPDFHTML
Abstract

Neural ordinary differential equations (ODEs) have attracted much attention as continuous-time counterparts of deep residual neural networks (NNs), and numerous extensions for recurrent NNs have been proposed. Since the 1980s, ODEs have also been used to derive theoretical results for NN learning rules, e.g., the famous connection between Oja's rule and principal component analysis. Such rules are typically expressed as additive iterative update processes which have straightforward ODE counterparts. Here we introduce a novel combination of learning rules and Neural ODEs to build continuous-time sequence processing nets that learn to manipulate short-term memory in rapidly changing synaptic connections of other nets. This yields continuous-time counterparts of Fast Weight Programmers and linear Transformers. Our novel models outperform the best existing Neural Controlled Differential Equation based models on various time series classification tasks, while also addressing their fundamental scalability limitations. Our code is public.

View on arXiv
Comments on this paper