ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01661
8
1

Style-Content Disentanglement in Language-Image Pretraining Representations for Zero-Shot Sketch-to-Image Synthesis

3 June 2022
Jan Zuiderveld
    DRL
ArXivPDFHTML
Abstract

In this work, we propose and validate a framework to leverage language-image pretraining representations for training-free zero-shot sketch-to-image synthesis. We show that disentangled content and style representations can be utilized to guide image generators to employ them as sketch-to-image generators without (re-)training any parameters. Our approach for disentangling style and content entails a simple method consisting of elementary arithmetic assuming compositionality of information in representations of input sketches. Our results demonstrate that this approach is competitive with state-of-the-art instance-level open-domain sketch-to-image models, while only depending on pretrained off-the-shelf models and a fraction of the data.

View on arXiv
Comments on this paper