ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.02457
12
20

Improving Contrastive Learning of Sentence Embeddings with Case-Augmented Positives and Retrieved Negatives

6 June 2022
Wei Wang
Liangzhu Ge
Jingqiao Zhang
Cheng Yang
ArXivPDFHTML
Abstract

Following SimCSE, contrastive learning based methods have achieved the state-of-the-art (SOTA) performance in learning sentence embeddings. However, the unsupervised contrastive learning methods still lag far behind the supervised counterparts. We attribute this to the quality of positive and negative samples, and aim to improve both. Specifically, for positive samples, we propose switch-case augmentation to flip the case of the first letter of randomly selected words in a sentence. This is to counteract the intrinsic bias of pre-trained token embeddings to frequency, word cases and subwords. For negative samples, we sample hard negatives from the whole dataset based on a pre-trained language model. Combining the above two methods with SimCSE, our proposed Contrastive learning with Augmented and Retrieved Data for Sentence embedding (CARDS) method significantly surpasses the current SOTA on STS benchmarks in the unsupervised setting.

View on arXiv
Comments on this paper