ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.03151
14
0

Privacy Amplification via Shuffled Check-Ins

7 June 2022
Seng Pei Liew
Satoshi Hasegawa
Tsubasa Takahashi
    FedML
ArXivPDFHTML
Abstract

We study a protocol for distributed computation called shuffled check-in, which achieves strong privacy guarantees without requiring any further trust assumptions beyond a trusted shuffler. Unlike most existing work, shuffled check-in allows clients to make independent and random decisions to participate in the computation, removing the need for server-initiated subsampling. Leveraging differential privacy, we show that shuffled check-in achieves tight privacy guarantees through privacy amplification, with a novel analysis based on R{\é}nyi differential privacy that improves privacy accounting over existing work. We also introduce a numerical approach to track the privacy of generic shuffling mechanisms, including Gaussian mechanism, which is the first evaluation of a generic mechanism under the distributed setting within the local/shuffle model in the literature. Empirical studies are also given to demonstrate the efficacy of the proposed approach.

View on arXiv
Comments on this paper