ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.03326
25
1

Compilation and Optimizations for Efficient Machine Learning on Embedded Systems

6 June 2022
Xiaofan Zhang
Yao Chen
Cong Hao
Sitao Huang
Yuhong Li
Deming Chen
ArXivPDFHTML
Abstract

Deep Neural Networks (DNNs) have achieved great success in a variety of machine learning (ML) applications, delivering high-quality inferencing solutions in computer vision, natural language processing, and virtual reality, etc. However, DNN-based ML applications also bring much increased computational and storage requirements, which are particularly challenging for embedded systems with limited compute/storage resources, tight power budgets, and small form factors. Challenges also come from the diverse application-specific requirements, including real-time responses, high-throughput performance, and reliable inference accuracy. To address these challenges, we introduce a series of effective design methodologies, including efficient ML model designs, customized hardware accelerator designs, and hardware/software co-design strategies to enable efficient ML applications on embedded systems.

View on arXiv
Comments on this paper