ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.04330
11
5

Predicting Embedding Reliability in Low-Resource Settings Using Corpus Similarity Measures

9 June 2022
Jonathan Dunn
Haipeng Li
Damian Sastre
ArXivPDFHTML
Abstract

This paper simulates a low-resource setting across 17 languages in order to evaluate embedding similarity, stability, and reliability under different conditions. The goal is to use corpus similarity measures before training to predict properties of embeddings after training. The main contribution of the paper is to show that it is possible to predict downstream embedding similarity using upstream corpus similarity measures. This finding is then applied to low-resource settings by modelling the reliability of embeddings created from very limited training data. Results show that it is possible to estimate the reliability of low-resource embeddings using corpus similarity measures that remain robust on small amounts of data. These findings have significant implications for the evaluation of truly low-resource languages in which such systematic downstream validation methods are not possible because of data limitations.

View on arXiv
Comments on this paper