ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.05737
20
182

SparseNeuS: Fast Generalizable Neural Surface Reconstruction from Sparse Views

12 June 2022
Xiaoxiao Long
Chu-Hsing Lin
Peng Wang
Taku Komura
Wenping Wang
    3DGS
ArXivPDFHTML
Abstract

We introduce SparseNeuS, a novel neural rendering based method for the task of surface reconstruction from multi-view images. This task becomes more difficult when only sparse images are provided as input, a scenario where existing neural reconstruction approaches usually produce incomplete or distorted results. Moreover, their inability of generalizing to unseen new scenes impedes their application in practice. Contrarily, SparseNeuS can generalize to new scenes and work well with sparse images (as few as 2 or 3). SparseNeuS adopts signed distance function (SDF) as the surface representation, and learns generalizable priors from image features by introducing geometry encoding volumes for generic surface prediction. Moreover, several strategies are introduced to effectively leverage sparse views for high-quality reconstruction, including 1) a multi-level geometry reasoning framework to recover the surfaces in a coarse-to-fine manner; 2) a multi-scale color blending scheme for more reliable color prediction; 3) a consistency-aware fine-tuning scheme to control the inconsistent regions caused by occlusion and noise. Extensive experiments demonstrate that our approach not only outperforms the state-of-the-art methods, but also exhibits good efficiency, generalizability, and flexibility.

View on arXiv
Comments on this paper