ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.06924
6
0

The Maximum Linear Arrangement Problem for trees under projectivity and planarity

14 June 2022
Lluís Alemany-Puig
J. L. Esteban
R. Ferrer-i-Cancho
ArXivPDFHTML
Abstract

A linear arrangement is a mapping π\piπ from the nnn vertices of a graph GGG to nnn distinct consecutive integers. Linear arrangements can be represented by drawing the vertices along a horizontal line and drawing the edges as semicircles above said line. In this setting, the length of an edge is defined as the absolute value of the difference between the positions of its two vertices in the arrangement, and the cost of an arrangement as the sum of all edge lengths. Here we study two variants of the Maximum Linear Arrangement problem (MaxLA), which consists of finding an arrangement that maximizes the cost. In the planar variant for free trees, vertices have to be arranged in such a way that there are no edge crossings. In the projective variant for rooted trees, arrangements have to be planar and the root of the tree cannot be covered by any edge. In this paper we present algorithms that are linear in time and space to solve planar and projective MaxLA for trees. We also prove several properties of maximum projective and planar arrangements, and show that caterpillar trees maximize planar MaxLA over all trees of a fixed size thereby generalizing a previous extremal result on trees.

View on arXiv
Comments on this paper