ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07011
17
1

Consistent Video Instance Segmentation with Inter-Frame Recurrent Attention

14 June 2022
Quanzeng You
Jiang Wang
Peng Chu
Andre Abrantes
Zicheng Liu
    VOS
ArXivPDFHTML
Abstract

Video instance segmentation aims at predicting object segmentation masks for each frame, as well as associating the instances across multiple frames. Recent end-to-end video instance segmentation methods are capable of performing object segmentation and instance association together in a direct parallel sequence decoding/prediction framework. Although these methods generally predict higher quality object segmentation masks, they can fail to associate instances in challenging cases because they do not explicitly model the temporal instance consistency for adjacent frames. We propose a consistent end-to-end video instance segmentation framework with Inter-Frame Recurrent Attention to model both the temporal instance consistency for adjacent frames and the global temporal context. Our extensive experiments demonstrate that the Inter-Frame Recurrent Attention significantly improves temporal instance consistency while maintaining the quality of the object segmentation masks. Our model achieves state-of-the-art accuracy on both YouTubeVIS-2019 (62.1\%) and YouTubeVIS-2021 (54.7\%) datasets. In addition, quantitative and qualitative results show that the proposed methods predict more temporally consistent instance segmentation masks.

View on arXiv
Comments on this paper