ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07203
10
0

Attributions Beyond Neural Networks: The Linear Program Case

14 June 2022
Florian Peter Busch
Matej Zečević
Kristian Kersting
D. Dhami
    FAtt
ArXivPDFHTML
Abstract

Linear Programs (LPs) have been one of the building blocks in machine learning and have championed recent strides in differentiable optimizers for learning systems. While there exist solvers for even high-dimensional LPs, understanding said high-dimensional solutions poses an orthogonal and unresolved problem. We introduce an approach where we consider neural encodings for LPs that justify the application of attribution methods from explainable artificial intelligence (XAI) designed for neural learning systems. The several encoding functions we propose take into account aspects such as feasibility of the decision space, the cost attached to each input, or the distance to special points of interest. We investigate the mathematical consequences of several XAI methods on said neural LP encodings. We empirically show that the attribution methods Saliency and LIME reveal indistinguishable results up to perturbation levels, and we propose the property of Directedness as the main discriminative criterion between Saliency and LIME on one hand, and a perturbation-based Feature Permutation approach on the other hand. Directedness indicates whether an attribution method gives feature attributions with respect to an increase of that feature. We further notice the baseline selection problem beyond the classical computer vision setting for Integrated Gradients.

View on arXiv
Comments on this paper