ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07259
13
16

Self-Supervised Learning of Image Scale and Orientation

15 June 2022
Jongmin Lee
Yoonwoo Jeong
Minsu Cho
    SSL
ArXivPDFHTML
Abstract

We study the problem of learning to assign a characteristic pose, i.e., scale and orientation, for an image region of interest. Despite its apparent simplicity, the problem is non-trivial; it is hard to obtain a large-scale set of image regions with explicit pose annotations that a model directly learns from. To tackle the issue, we propose a self-supervised learning framework with a histogram alignment technique. It generates pairs of image patches by random rescaling/rotating and then train an estimator to predict their scale/orientation values so that their relative difference is consistent with the rescaling/rotating used. The estimator learns to predict a non-parametric histogram distribution of scale/orientation without any supervision. Experiments show that it significantly outperforms previous methods in scale/orientation estimation and also improves image matching and 6 DoF camera pose estimation by incorporating our patch poses into a matching process.

View on arXiv
Comments on this paper