ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07766
179
44
v1v2 (latest)

Pareto Invariant Risk Minimization

International Conference on Learning Representations (ICLR), 2022
15 June 2022
Yongqiang Chen
Kaiwen Zhou
Yatao Bian
Binghui Xie
Bing Wu
Yonggang Zhang
Kaili Ma
Han Yang
P. Zhao
    OODOODD
ArXiv (abs)PDFHTML
Abstract

Despite the success of invariant risk minimization (IRM) in tackling the Out-of-Distribution generalization problem, IRM can compromise the optimality when applied in practice. The practical variants of IRM, e.g., IRMv1, have been shown to have significant gaps with IRM and thus could fail to capture the invariance even in simple problems. Moreover, the optimization procedure in IRMv1 involves two intrinsically conflicting objectives, and often requires careful tuning for the objective weights. To remedy the above issues, we reformulate IRM as a multi-objective optimization problem, and propose a new optimization scheme for IRM, called PAreto Invariant Risk Minimization (PAIR). PAIR can adaptively adjust the optimization direction under the objective conflicts. Furthermore, we show PAIR can empower the practical IRM variants to overcome the barriers with the original IRM when provided with proper guidance. We conduct experiments with ColoredMNIST to confirm our theory and the effectiveness of PAIR.

View on arXiv
Comments on this paper