ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.08572
14
23

Enhanced Bi-directional Motion Estimation for Video Frame Interpolation

17 June 2022
Xin Jin
Longhai Wu
Guotao Shen
Youxin Chen
Jie Chen
Jayoon Koo
Cheul-hee Hahm
ArXivPDFHTML
Abstract

We present a novel simple yet effective algorithm for motion-based video frame interpolation. Existing motion-based interpolation methods typically rely on a pre-trained optical flow model or a U-Net based pyramid network for motion estimation, which either suffer from large model size or limited capacity in handling complex and large motion cases. In this work, by carefully integrating intermediateoriented forward-warping, lightweight feature encoder, and correlation volume into a pyramid recurrent framework, we derive a compact model to simultaneously estimate the bidirectional motion between input frames. It is 15 times smaller in size than PWC-Net, yet enables more reliable and flexible handling of challenging motion cases. Based on estimated bi-directional motion, we forward-warp input frames and their context features to intermediate frame, and employ a synthesis network to estimate the intermediate frame from warped representations. Our method achieves excellent performance on a broad range of video frame interpolation benchmarks. Code and trained models are available at \url{https://github.com/srcn-ivl/EBME}.

View on arXiv
Comments on this paper