ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.09241
15
0

An Empirical Study of Quantum Dynamics as a Ground State Problem with Neural Quantum States

18 June 2022
Vladimir Vargas-Calderón
Herbert Vinck-Posada
Fabio A. González
ArXivPDFHTML
Abstract

We consider the Feynman-Kitaev formalism applied to a spin chain described by the transverse field Ising model. This formalism consists of building a Hamiltonian whose ground state encodes the time evolution of the spin chain at discrete time steps. To find this ground state, variational wave functions parameterised by artificial neural networks -- also known as neural quantum states (NQSs) -- are used. Our work focuses on assessing, in the context of the Feynman-Kitaev formalism, two properties of NQSs: expressivity (the possibility that variational parameters can be set to values such that the NQS is faithful to the true ground state of the system) and trainability (the process of reaching said values). We find that the considered NQSs are capable of accurately approximating the true ground state of the system, i.e., they are expressive enough ans\"atze. However, extensive hyperparameter tuning experiments show that, empirically, reaching the set of values for the variational parameters that correctly describe the ground state becomes ever more difficult as the number of time steps increase because the true ground state becomes more entangled, and the probability distribution starts to spread across the Hilbert space canonical basis.

View on arXiv
Comments on this paper