ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.10032
11
7

Communication-Efficient Federated Learning With Data and Client Heterogeneity

20 June 2022
Hossein Zakerinia
Shayan Talaei
Giorgi Nadiradze
Dan Alistarh
    FedML
ArXivPDFHTML
Abstract

Federated Learning (FL) enables large-scale distributed training of machine learning models, while still allowing individual nodes to maintain data locally. However, executing FL at scale comes with inherent practical challenges: 1) heterogeneity of the local node data distributions, 2) heterogeneity of node computational speeds (asynchrony), but also 3) constraints in the amount of communication between the clients and the server. In this work, we present the first variant of the classic federated averaging (FedAvg) algorithm which, at the same time, supports data heterogeneity, partial client asynchrony, and communication compression. Our algorithm comes with a rigorous analysis showing that, in spite of these system relaxations, it can provide similar convergence to FedAvg in interesting parameter regimes. Experimental results in the rigorous LEAF benchmark on setups of up to 300300300 nodes show that our algorithm ensures fast convergence for standard federated tasks, improving upon prior quantized and asynchronous approaches.

View on arXiv
Comments on this paper