ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.10167
62
3
v1v2 (latest)

Tyler's and Maronna's M-estimators: Non-Asymptotic Concentration Results

21 June 2022
Elad Romanov
Gil Kur
B. Nadler
ArXiv (abs)PDFHTML
Abstract

Tyler's and Maronna's M-estimators, as well as their regularized variants, are popular robust methods to estimate the scatter or covariance matrix of a multivariate distribution. In this work, we study the non-asymptotic behavior of these estimators, for data sampled from a distribution that satisfies one of the following properties: 1) independent sub-Gaussian entries, up to a linear transformation; 2) log-concave distributions; 3) distributions satisfying a convex concentration property. Our main contribution is the derivation of tight non-asymptotic concentration bounds of these M-estimators around a suitably scaled version of the data sample covariance matrix. Prior to our work, non-asymptotic bounds were derived only for Elliptical and Gaussian distributions. Our proof uses a variety of tools from non asymptotic random matrix theory and high dimensional geometry. Finally, we illustrate the utility of our results on two examples of practical interest: sparse covariance and sparse precision matrix estimation.

View on arXiv
Comments on this paper