ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.10575
16
9

Solving Constrained Variational Inequalities via a First-order Interior Point-based Method

21 June 2022
Tong Yang
Michael I. Jordan
Tatjana Chavdarova
ArXivPDFHTML
Abstract

We develop an interior-point approach to solve constrained variational inequality (cVI) problems. Inspired by the efficacy of the alternating direction method of multipliers (ADMM) method in the single-objective context, we generalize ADMM to derive a first-order method for cVIs, that we refer to as ADMM-based interior-point method for constrained VIs (ACVI). We provide convergence guarantees for ACVI in two general classes of problems: (i) when the operator is ξ\xiξ-monotone, and (ii) when it is monotone, some constraints are active and the game is not purely rotational. When the operator is, in addition, L-Lipschitz for the latter case, we match known lower bounds on rates for the gap function of O(1/K)\mathcal{O}(1/\sqrt{K})O(1/K​) and O(1/K)\mathcal{O}(1/K)O(1/K) for the last and average iterate, respectively. To the best of our knowledge, this is the first presentation of a first-order interior-point method for the general cVI problem that has a global convergence guarantee. Moreover, unlike previous work in this setting, ACVI provides a means to solve cVIs when the constraints are nontrivial. Empirical analyses demonstrate clear advantages of ACVI over common first-order methods. In particular, (i) cyclical behavior is notably reduced as our methods approach the solution from the analytic center, and (ii) unlike projection-based methods that zigzag when near a constraint, ACVI efficiently handles the constraints.

View on arXiv
Comments on this paper