ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.10779
17
39

Not Just Streaks: Towards Ground Truth for Single Image Deraining

22 June 2022
Yunhao Ba
Howard Zhang
Ethan Yang
Akira Suzuki
Arnold Pfahnl
Chethan Chinder Chandrappa
C. Melo
Suya You
Stefano Soatto
A. Wong
A. Kadambi
ArXivPDFHTML
Abstract

We propose a large-scale dataset of real-world rainy and clean image pairs and a method to remove degradations, induced by rain streaks and rain accumulation, from the image. As there exists no real-world dataset for deraining, current state-of-the-art methods rely on synthetic data and thus are limited by the sim2real domain gap; moreover, rigorous evaluation remains a challenge due to the absence of a real paired dataset. We fill this gap by collecting a real paired deraining dataset through meticulous control of non-rain variations. Our dataset enables paired training and quantitative evaluation for diverse real-world rain phenomena (e.g. rain streaks and rain accumulation). To learn a representation robust to rain phenomena, we propose a deep neural network that reconstructs the underlying scene by minimizing a rain-robust loss between rainy and clean images. Extensive experiments demonstrate that our model outperforms the state-of-the-art deraining methods on real rainy images under various conditions. Project website: https://visual.ee.ucla.edu/gt_rain.htm/.

View on arXiv
Comments on this paper