ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.13714
22
2

Generalized Policy Improvement Algorithms with Theoretically Supported Sample Reuse

28 June 2022
James Queeney
I. Paschalidis
Christos G. Cassandras
    OffRL
ArXivPDFHTML
Abstract

Data-driven, learning-based control methods offer the potential to improve operations in complex systems, and model-free deep reinforcement learning represents a popular approach to data-driven control. However, existing classes of algorithms present a trade-off between two important deployment requirements for real-world control: (i) practical performance guarantees and (ii) data efficiency. Off-policy algorithms make efficient use of data through sample reuse but lack theoretical guarantees, while on-policy algorithms guarantee approximate policy improvement throughout training but suffer from high sample complexity. In order to balance these competing goals, we develop a class of Generalized Policy Improvement algorithms that combines the policy improvement guarantees of on-policy methods with the efficiency of sample reuse. We demonstrate the benefits of this new class of algorithms through extensive experimental analysis on a variety of continuous control tasks from the DeepMind Control Suite.

View on arXiv
Comments on this paper